zeros → cons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
zeros → cons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
zeros → cons(0, n__zeros)
and(tt, X) → activate(X)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Used ordering:
and(tt, X) → activate(X)
POL(0) = 0
POL(activate(x1)) = x1
POL(and(x1, x2)) = 2 + 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2·x1
POL(n__take(x1, x2)) = x1 + 2·x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(tt) = 2
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
zeros → cons(0, n__zeros)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
zeros → cons(0, n__zeros)
length(nil) → 0
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Used ordering:
length(nil) → 0
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(length(x1)) = 2 + 2·x1
POL(n__take(x1, x2)) = x1 + 2·x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + 2·x2
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
zeros → cons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
zeros → cons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
Used ordering:
take(0, IL) → nil
POL(0) = 0
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + x2
POL(length(x1)) = x1
POL(n__take(x1, x2)) = 1 + x1 + x2
POL(n__zeros) = 0
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
zeros → cons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
zeros → cons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zeros) → ZEROS
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
zeros → cons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
zeros → cons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
The following rules are removed from R:
TAKE(s(M), cons(N, IL)) → ACTIVATE(IL)
Used ordering: POLO with Polynomial interpretation [25]:
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(TAKE(x1, x2)) = x1 + x2
POL(activate(x1)) = x1
POL(cons(x1, x2)) = 2·x1 + x2
POL(n__take(x1, x2)) = 2·x1 + x2
POL(n__zeros) = 2
POL(s(x1)) = x1
POL(take(x1, x2)) = 2·x1 + x2
POL(zeros) = 2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
From the DPs we obtained the following set of size-change graphs:
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
zeros → cons(0, n__zeros)
length(cons(N, L)) → s(length(activate(L)))
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
zeros → n__zeros
take(X1, X2) → n__take(X1, X2)
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
Used ordering: POLO with Polynomial interpretation [25]:
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x1 + 2·x2
POL(n__take(x1, x2)) = x1 + x2
POL(n__zeros) = 0
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = x1 + x2
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
activate(X) → X
zeros → n__zeros
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(activate(x1)) = 1 + 2·x1
POL(cons(x1, x2)) = 1 + 2·x1 + 2·x2
POL(n__take(x1, x2)) = 2 + x1 + 2·x2
POL(n__zeros) = 0
POL(take(x1, x2)) = 2 + x1 + 2·x2
POL(zeros) = 1
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
activate(n__zeros)
activate(n__take(x0, x1))
take(x0, x1)
zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
POL(0) = 0
POL(LENGTH(x1)) = x1
POL(activate(x1)) = 2·x1
POL(cons(x1, x2)) = 2·x1 + 2·x2
POL(n__take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(n__zeros) = 0
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2
POL(zeros) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
activate(n__zeros)
activate(n__take(x0, x1))
take(x0, x1)
zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
zeros → cons(0, n__zeros)
activate(n__zeros)
activate(n__take(x0, x1))
take(x0, x1)
zeros
take(x0, x1)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ UsableRulesProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
zeros → cons(0, n__zeros)
activate(n__zeros)
activate(n__take(x0, x1))
zeros
LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)
activate(n__zeros) → zeros
zeros → cons(0, n__zeros)
activate(n__zeros)
activate(n__take(x0, x1))
zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ UsableRulesProof
LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)
zeros → cons(0, n__zeros)
activate(n__zeros)
activate(n__take(x0, x1))
zeros
activate(n__zeros)
activate(n__take(x0, x1))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ UsableRulesProof
LENGTH(cons(y0, n__zeros)) → LENGTH(zeros)
zeros → cons(0, n__zeros)
zeros
LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))
zeros → cons(0, n__zeros)
zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ UsableRulesProof
LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))
zeros
zeros
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ UsableRulesProof
LENGTH(cons(y0, n__zeros)) → LENGTH(cons(0, n__zeros))
LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ MNOCProof
↳ QDP
↳ RuleRemovalProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ Instantiation
↳ QDP
↳ NonTerminationProof
↳ UsableRulesProof
LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
LENGTH(cons(0, n__zeros)) → LENGTH(cons(0, n__zeros))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ NonTerminationProof
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros
LENGTH(cons(N, L)) → LENGTH(activate(L))
activate(n__zeros) → zeros
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(X) → X
take(s(M), cons(N, IL)) → cons(N, n__take(M, activate(IL)))
take(X1, X2) → n__take(X1, X2)
zeros → cons(0, n__zeros)
zeros → n__zeros